

DisplayPort v1.3 Feature Summary

Sept 18, 2014

DisplayPort 1.3 Summary

- The VESA DisplayPort Standard, Version 1.3, was released on Sept 15, 2015
- Replaces DisplayPort Version 1.2a for new designs
- Backward compatible, offers new optional features
- Compliance tests expected 1st Half of 2015

Summary of Main New Features for DP 1.3

- 50% Increase in video data transfer rate
 - supports higher resolutions
 - deeper colors
 - higher display refresh rates
- Further optimized for use on shared interfaces including DP Alt Mode on USB Type-C or DockPort
- "Living Room Friendly" features added to enhance applicability for consumer displays including digital televisions

DP 1.3 Link Rate Increase

DP Version Introduction	Link Rate Name	Bit rate	Max Resolution Support (24 bpp, 60Hz Refresh, 4:4:4 format)	Max Resolution Support (24 bpp, 60Hz Refresh, 4:2:0 format)
DP 1.0	RBR	1.62 Gbps	1920x1080	Not supported
	HBR	2.7 Gbps	2560x1600	Not supported
DP 1.2	HBR2	5.4 Gbps	4K x 2K	Not supported
DP 1.3	HBR3	8.1 Gbps	5K x 3K	8K x 4K

Total useable data transfer rate for DP 1.3 = 25.92 Gbps

- 8.1 Gbps link rate, per lane
- x 0.8 to account for 8b/10b transport coding overhead
- x 4 maximum number of available lanes
- 25.92 Gbps total usable data transfer rate

Example Display Support using HBR3 Link Rate

HBR3 enables the following display resolution through a single DisplayPort connection, without the use of compression:

- 5K x 3K (pixel resolution of 5120 x 2880) with 60Hz refresh, 24 bit color
- Enhanced 4K UHD display, with these example enhancements:
 - 120Hz refresh and 24 bit color
 - 96Hz refresh and 30 bit color

Note: The examples above assume the support of HBR3 by both the video source and display, and the use of VESA monitor timing. All examples assume the standard 4:4:4 display pixel format.

Example Display Applications for HBR3 Link Rate (Continued)

Using the DisplayPort Multi-Stream feature, HBR3 can enable the following example display configurations, without the use of compression:

- Two 4K UHD (3840 x 2160) displays
- Up to Four 2560 x 1600 displays (see note 2 below)
- Up to Seven 1080p or 1920 x 1200 displays (see note 2 below)
- One 4K UHD display with up to Two 2560 x 1600 displays

Notes:

- (1) The examples above assume the following:
- HBR3 and Multi-Stream supported by both the video source and displays
- 60Hz refresh with 24 bit color, using the 4:4:4 pixel format and VESA monitor timing
- (2) The number of connected displays might be limited by video source capability. A typical personal computer will support a maximum of 3 to 6 displays, depending on the GPU.

Optimization for Shared Interface Use

- Numerous specification enhancements to simplify the use of DisplayPort as an ingredient in the following interface examples:
 - The USB Type-C connector, using the DisplayPort Alt Mode
 - VESA DockPort Standard
 - VESA Mobility DisplayPort Standard (MyDP)
 - VESA Embedded DisplayPort Standard (eDP)
 - ThunderBolt
 - Future wireless interfaces
- Example enhancements to DP 1.3:
 - Improved link training to accommodate more varied and complex video transport topologies, along with the higher link rate of HBR3
 - The addition of link-trainable repeaters to increase performance and reliability across complex topologies (such as docking station + Hub + active cable)
 - Unified device register set to simplify implementation and allow devices to support various interface types

Example Link Trainable Repeater Application

- Used to overcome signal loss in complex signal distribution topologies
- Can be applied to active cables
- For each physical interface segment, link training results in signal transmitter and receiver adjustments to optimize signal performance
- This unique video interface feature yields a higher interface data rate with increased reliability and lower error rate

New "Living Room Friendly" Features

Support of HDCP 2.2

 New content protection protocol that will be required for viewing premium video content at UHD resolution

Support of DisplayPort-to-HDMI 2.0 Protocol Conversion

- Enables the support of DisplayPort-to-HDMI 2.0 protocol adapters for use with DisplayPort video source devices, include devices that use the USB Type-C connector supporting DisplayPort Alt Mode
- DisplayPort-to-HDMI 2.0 protocol converters will only require the HBR2 link rate and will support 4Kp60Hz in 4:4:4 pixel encoding format and CEC communication

New "Living Room Friendly" Features (Continued)

Support of native 4:2:0 pixel format

- This pixel format is often used for digital televisions to reduce video data rate requirements. The HBR3 link rate, combined with 4:2:0, can support a display resolution up to 8K x 4K (7680 x 4320), also known as QUHD
- Will also simplify DP-to-HDMI 2.0 protocol converter implementation when supporting HDMI digital TVs that require 4:2:0 format

Other New Features

- New definition for Branch Device using SST (Single Stream Transport mode)
 - Enables different link configurations between the upstream facing and downstream facing ports, such as 2 HBR2 links in, and 4 HBR links out
 - Simplifies the implementation of docking stations, those with USB
 Type-C receptacles supporting DisplayPort Alternate Mode
- Support of RAW pixel format to support high-performance camera sensors

DisplayPort 1.3 Continues to Support Other Features that are Unique to DisplayPort

- Support of multiple monitors using Multi-Stream
- Support of high-definition audio formats
- Support of Adaptive Sync
- Support of protocol converters to VGA, DVI, or HDMI
- Low voltage, AC coupled interface compatible with sub-micron process geometry, simplifying integration
- Data scrambling and fixed link rates simplify EMI and RFI mitigation
- Royalty free standard available to VESA members

Expected DisplayPort 1.3 Deployment

- General availability of devices supporting new features such as HBR3 or 4:2:0 is expected in 2016.
- DP 1.3 is expected to be enabled in both native DP devices and devices using the USB Type-C interface with the DisplayPort Alternate Mode
- DisplayPort-to-HDMI 2.0 converters are expected in 2015. May require a firmware update for existing DP 1.2a systems.

For More Information about DisplayPort or VESA please visit:

www.vesa.org

